Abstract
We consider the sharp interface limit of the Allen-Cahn equation with Dirichlet or dynamic boundary conditions and give a varifold characterization of its limit which is formally a mean curvature flow with Dirichlet or dynamic boundary conditions. In order to show the existence of the limit, we apply the phase field method under the vanishing on the boundary and some uniform boundedness property of the discrepancy measure. For this purpose, we extend the usual Brakke flow under these boundary conditions by the first variations for varifolds on the boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.