Abstract

Abstract In this work, we focus on investigating the traveling and other localized solitary wave propagation in nonlinear low-pass electrical transmission lines model practicing the new modified sub-ODE method, the unified Riccati equation expansion method, and the fractional linear transform method. A variety of traveling and solitary wave solutions are emerging comprising of bright, dark, kink, anti-kink, hyperbolic function, and doubly periodic Jacobian elliptic function solutions. The applied three integration schemes are reliable and stalwart for acquiring the new kink, bright, dark, periodic and non-singular soliton solutions of the wave propagation in nonlinear low-pass electrical transmission lines. Also, we give the geometric description of some of the obtained solutions for the considered model by computing the most important geometric quantities viz the Gaussian and the mean curvatures. To display the extant physical significance of the considered model equation, some two, three-dimensional figures and density profiles of the acquired solutions are illustrated for the specific choice of arbitrary parameters. The effects of the variation of nonlinear parameters of the nonlinear low-pass electrical transmission lines model on the evolution of soliton solutions are demonstrated. In addition, all derived solutions were verified by substituting back into the considered equation with the aid of Mathematica software. Furthermore, a comparison of our results for the considered model with the obtained solutions in the literature is also provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call