Abstract

Neural style transfer (NST) is a technique based on the deep learning of a convolutional neural network (CNN) to create entertaining pictures by cleverly stylizing ordinary pictures with the predetermined visual art style. However, three issues must be carefully investigated during the generation of neural-stylized artwork: the color scheme, the strength of style of the strokes, and the adjustment of image contrast. To solve these problems and select image colorization based on personal preference, in this paper, we propose modified universal-style transfer (UST) method combined with the image fusion and color enhancement methods to design a good post-processing framework to tackle the three above-mentioned issues simultaneously. This work provides more visual effects for stylized images, and also can integrate into the UST method effectively. In addition, the proposed method is suitable for stylized images generated by any NST method, but it also works similarly to the Multi-Style Transfer (MST) method, which mixes two different stylized images. Finally, our proposed method successfully combined the modified UST method and post-processing method to meet personal preference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.