Abstract

We introduce a variety of algebras in the language of Boolean algebras with an extra implication, namely the variety of pseudo-subordination algebras, which is closely related to subordination algebras. We believe it provides a minimal general algebraic framework where to place and systematise the research on classes of algebras related to several kinds of subordination algebras. We also consider the subvariety of pseudo-contact algebras, related to contact algebras, and the subvariety of the strict implication algebras introduced in Bezhanishvili et al. [(2019). A strict implication calculus for compact Hausdorff spaces. Annals of Pure and Applied Logic, 170, 102714]. The variety of pseudo-subordination algebras is term equivalent to the variety of Boolean algebras with a binary modal operator. We exploit this fact in our study. In particular, to obtain a topological duality from which we derive the known topological dualities for subordination algebras and contact algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.