Abstract

In this paper we present a fractional time-step method for Lagrangian formulations of solid dynamics problems. The method can be interpreted as belonging to the class of variational integrators which are designed to conserve linear and angular momentum of the entire mechanical system exactly. Energy fluctuations are found to be minimal and stay bounded for long durations. In order to handle incompressibility, a mixed formulation in which the pressure appears explicitly is adopted. The velocity update over a time step is split into deviatoric and volumetric components. The deviatoric component is advanced using explicit time marching, whereas the pressure correction for each time step is computed implicitly by solving a Poisson-like equation. Once the pressure is known, the volumetric component of the velocity update is calculated. In contrast with standard explicit schemes, where the time-step size is determined by the speed of the pressure waves, the allowable time step for the proposed scheme is found to depend only on the shear wave speed. This leads to a significant advantage in the case of nearly incompressible materials and permits the solution of truly incompressible problems. Copyright © 2005 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.