Abstract
A variational study of finding critical points of the total squared torsion functional for curves in Euclidean 3-spaces is presented. Critical points of this functional also known as one of the natural Hamiltonians of curves are characterized by two Euler-Lagrange equations in terms of curvature and torsion of a curve. To solve these balance equations, the curvature of the critical curve is expressed by its torsion so that equations are completely solved by quadratures. Then two Killing fields along the critical curve are found for integrating the structural equations of the critical curve and this curve is expressed by quadratures in a system of cylindrical coordinate. Finally, the problem is generalized to finding extremals of total squared torsion functional for nonnull curves in Minkowski 3-space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.