Abstract

We consider the Dirac-Frenkel variational principle in Wigner phase-space and apply it to the Wigner-Liouville equation for both imaginary and real time dynamical problems. The variational principle allows us to deduce the optimal time-evolution of the parameter-dependent Wigner distribution. It is shown that the variational principle can be formulated alternatively as a "principle of least action." Several low-dimensional problems are considered. In imaginary time, high-temperature classical distributions are "cooled" to arrive at low-temperature quantum Wigner distributions whereas in real time, the coherent dynamics of a particle in a double well is considered. Especially appealing is the relative ease at which Feynman's path integral centroid variable can be incorporated as a variational parameter. This is done by splitting the high-temperature Boltzmann distribution into exact local centroid constrained distributions, which are thereafter cooled using the variational principle. The local distributions are sampled by Metropolis Monte Carlo by performing a random walk in the centroid variable. The combination of a Monte Carlo and a variational procedure enables the study of quantum effects in low-temperature many-body systems, via a method that can be systematically improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.