Abstract

We present a novel variational approach to gradient-flow evolution in metric spaces. In particular, we advance a functional defined on entire trajectories, whose minimizers converge to curves of maximal slope for geodesically convex energies. The crucial step of the argument is the reformulation of the variational approach in terms of a dynamic programming principle, and the use of the corresponding Hamilton–Jacobi equation. The result is applicable to a large class of nonlinear evolution PDEs including nonlinear drift-diffusion, Fokker–Planck, and heat flows on metric-measure spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.