Abstract
Many events occur in real-world and social networks. Events are related to the past and there are patterns in the evolution of event sequences. Understanding the patterns can help us better predict the type and arriving time of the next event. In the literature, both feature-based approaches and generative approaches are utilized to model the event sequence. Feature-based approaches extract a variety of features, and train a regression or classification model to make a prediction. Yet, their performance is dependent on the experience-based feature exaction. Generative approaches usually assume the evolution of events follow a stochastic point process (e.g., Poisson process or its complexer variants). However, the true distribution of events is never known and the performance depends on the design of stochastic process in practice. To solve the above challenges, in this paper, we present a novel probabilistic generative model for event sequences. The model is termed Variational Event Point Process (VEPP). Our model introduces variational auto-encoder to event sequence modeling that can better use the latent information and capture the distribution over inter-arrival time and types of event sequences. Experiments on real-world datasets prove effectiveness of our proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.