Abstract
The purpose of this study is to investigate a variational formulation of the problem of three-dimensional (3D) interpretation of temporal image sequences based on the 3D brightness constraint and anisotropic regularization. The method allows movement of both the viewing system and objects and does not require the computation of image motion prior to 3D interpretation. Interpretation follows the minimization of a functional with two terms: a term of conformity of the 3D interpretation to the image sequence first-order spatio-temporal variations, and a term of regularization based on anisotropic diffusion to preserve the boundaries of interpretation. The Euler–Lagrange partial differential equations corresponding to the functional are solved efficiently via the half-quadratic algorithm. Results of several experiments on synthetic and real image sequences are given to demonstrate the validity of the method and its implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.