Abstract

A variational method based on previous numerical forecasts is developed to estimate and correct non-systematic component of numerical weather forecast error. In the method, it is assumed that the error is linearly dependent on some combination of the forecast fields, and three types of forecast combination are applied to identifying the forecasting error: 1) the forecasts at the ending time, 2) thecombination of initial fields and the forecasts at the ending time, and 3) the combination of the forecasts at the ending time and the tendency of the forecast. The Single Value Decomposition (SVD) of the covariance matrix between the forecast and forecasting error is used to obtain the inverse mapping from flow space to the error space during the training period. The background covariance matrix is hereby reduced to a simple diagonal matrix. The method is tested with a shallow-water equation model by introducing two different model errors. The results of error correction for 6, 24 and 48 h forecasts show that the method is effective for improving the quality of the forecast when the forecasting error obviously exceeds the analysis error and it is optimal when the third type of forecast combinations is applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.