Abstract
For images with intensity inhomogeneities that can’t get accurate segmentation results, this paper proposes a variational level set model based on local clustering. First,based on the model of images with intensity inhomogeneities, we use the K-mean clustering algorithm for intensity clustering in a neighborhood of each point of images with intensity inhomogeneities, and define a local clustering criterion function for the image intensities in the neighborhood. Then this local clustering criterion function is then integrated with respect to the neighborhood center to give a global criterion of image segmentation. This criterion defines an energy function as a local intensity fitting term in the level set model. By minimizing this energy, our method is able to get the accurate image segmentation. The image segmentation results prove that our model in the aspect of segmenting images with intensity inhomogeneity is better than piecewise constant (PC) models, and the segmentation efficiency is higher than region-scalable fitting (RSF) model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.