Abstract

A robust numerical methodology to predict equilibrium interfaces over arbitrary solid surfaces is developed. The kernel of the proposed method is the distance regularized level set equations (DRLSE) with techniques to incorporate the no-penetration and volume-conservation constraints. In this framework, we avoid reinitialization that is typically used in traditional level set methods. This allows for a more efficient algorithm since only one advection equation is solved, and avoids numerical error associated with the re-distancing step. A novel surface tension distribution, based on harmonic mean, is prescribed such that the zero level set has the correct liquid-solid surface tension value. This leads to a more accurate prediction of the triple contact point location. The method uses second-order central difference schemes which facilitates easy parallel implementation, and is validated by comparing to traditional level set methods for canonical problems. The application of the method in the context of Gibbs free energy minimization, to obtain liquid-air interfaces is validated against existing analytical solutions. The capability of the methodology to predict equilibrium shapes over both structured and realistic rough surfaces is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.