Abstract
The aim of this paper is to study an evolution variational inequality that generalizes some contact problems with Coulomb friction in small deformation elasticity. Using an incremental procedure, appropriate estimates and convergence properties of the discrete solutions, the existence of a continuous solution is proved. This abstract result is applied to quasistatic contact problems with a local Coulomb friction law for nonlinear Hencky and also for linearly elastic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.