Abstract
We reformulate the Kohn–Sham density functional theory (KSDFT) as a nested variational problem in the one-particle density operator, the electrostatic potential and a field dual to the electron density. The corresponding functional is linear in the density operator and thus amenable to spectral representation. Based on this reformulation, we introduce a new approximation scheme, termed spectral binning, which does not require smoothing of the occupancy function and thus applies at arbitrarily low temperatures. We prove convergence of the approximate solutions with respect to spectral binning and with respect to an additional spatial discretization of the domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.