Abstract

AbstractA variational model has been developed to investigate the coupled thermo-mechanical response of a three-dimensional continuum. The linear Partial Differential Equations (PDEs) of this problem are already well-known in the literature. However, in this paper, we avoid the use of the second principle of thermodynamics, basing the formulation only on a proper definition (i) of kinematic descriptors (the displacement and the entropic displacement), (ii) of the action functional (with kinetic, internal and external energy functions) and (iii) of the Rayleigh dissipation function. Thus, a Hamilton–Rayleigh variational principle is formulated, and the cited PDEs have been derived with a set of proper Boundary Conditions (BCs). Besides, the Lagrangian variational perspective has been expanded to analyze linear irreversible processes by generalizing Biot’s formulation, namely, including thermal inertia in the kinetic energy definition. Specifically, this implies Cattaneo’s law for heat conduction, and the well-known Lord–Shulman model for thermo-elastic anisotropic bodies is then deduced. The developed variational framework is ideal for the perspective of analyzing the thermo-mechanical problems with micromorphic and/or higher-order gradient continuum models, where the deduction of a coherent system of PDEs and BCs is, on the one hand, not straightforward and, on the other hand, natural within the presented variational deduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.