Abstract

This work addresses the micro–macro modeling of composites having elasto-plastic constituents. A new model is proposed to compute the effective stress–strain relation along arbitrary loading paths. The proposed model is based on an incremental variational principle (Ortiz, M., Stainier, L., 1999. The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171, 419–444) according to which the local stress–strain relation derives from a single incremental potential at each time step. The effective incremental potential of the composite is then estimated based on a linear comparison composite (LCC) with an effective behavior computed using available schemes in linear elasticity. Algorithmic elegance of the time-integration of J 2 elasto-plasticity is exploited in order to define the LCC. In particular, the elastic predictor strain is used explicitly. The method yields a homogenized yield criterion and radial return equation for each phase, as well as a homogenized plastic flow rule. The predictive capabilities of the proposed method are assessed against reference full-field finite element results for several particle-reinforced composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.