Abstract

AbstractThis paper demonstrates that the shallow water semigeostrophic equations arise from a degenerate second-order Hamilton principle of very special structure. The associated Euler–Lagrange operator factors into a fast and a slow first-order operator; restricting to the slow part yields the geostrophic momentum approximation as balanced dynamics. While semigeostrophic theory has been considered variationally before, this structure appears to be new. It leads to a straightforward derivation of the geostrophic momentum approximation and its associated potential vorticity law. Our observations further affirm, from a different point of view, the known difficulty in generalizing the semigeostrophic equations to the case of a spatially varying Coriolis parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.