Abstract
Nonnegative matrix factorization (NMF) is a powerful tool for parameter estimation applied in numerous robotics applications, such as path planning, motion trajectory prediction, and motion intention detection. In particular, NMF has been successfully used to extract simplified and organized movement primitives from myoelectric signal (MES) for robust control of multi-degree of freedom humanoid robots. However, MES is typically contaminated by complex noise sources. The system performance often degrades due to the simplified Gaussian assumption of the noise distribution in existing NMF methods. Furthermore, most existing NMF models are unable to automatically determine the rank of the latent matrices. To address these issues, this article presents a hybrid variational Bayesian Gaussian mixture and NMF (GMNMF) model with a finite Gaussian mixture model adopted to fit the mixed noise density function of MES. In addition, the automatic relevant determination criterion is applied to automatically infer the number of movement primitives. The coordinate descent update rules for the proposed model are formulated by mean-field variational Bayesian inference. We assess the model performance on five synthetic noise distribution functions and an experimental MES dataset to perform six wrist movements. The results demonstrate that GMNMF yields low error and high robustness in extracting the movement primitives over four competitive methods for robust cybernetic control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.