Abstract
We present, in this paper, a new unsupervised method for joint image super-resolution and separation between smooth and point sources. For this purpose, we propose a Bayesian approach with a Markovian model for the smooth part and Student’s t-distribution for point sources. All model and noise parameters are considered unknown and should be estimated jointly with images. However, joint estimators (joint MAP or posterior mean) are intractable and an approximation is needed. Therefore, a new gradient-like variational Bayesian method is applied to approximate the true posterior by a free-form separable distribution. A parametric form is obtained by approximating marginals but with form parameters that are mutually dependent. Their optimal values are achieved by iterating them till convergence. The method was tested by the model-generated data and a real dataset from the Herschel space observatory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.