Abstract

An increasing number of studies are using beadarrays to measure DNA methylation on a genome-wide basis. The purpose is to identify novel biomarkers in a wide range of complex genetic diseases including cancer. A common difficulty encountered in these studies is distinguishing true biomarkers from false positives. While statistical methods aimed at improving the feature selection step have been developed for gene expression, relatively few methods have been adapted to DNA methylation data, which is naturally beta-distributed. Here we explore and propose an innovative application of a recently developed variational Bayesian beta-mixture model (VBBMM) to the feature selection problem in the context of DNA methylation data generated from a highly popular beadarray technology. We demonstrate that VBBMM offers significant improvements in inference and feature selection in this type of data compared to an Expectation-Maximization (EM) algorithm, at a significantly reduced computational cost. We further demonstrate the added value of VBBMM as a feature selection and prioritization step in the context of identifying prognostic markers in breast cancer. A variational Bayesian approach to feature selection of DNA methylation profiles should thus be of value to any study undergoing large-scale DNA methylation profiling in search of novel biomarkers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call