Abstract

This paper addresses the problem of non-rigid video registration, or the computation of optical flow from a reference frame to each of the subsequent images in a sequence, when the camera views deformable objects. We exploit the high correlation between 2D trajectories of different points on the same non-rigid surface by assuming that the displacement of any point throughout the sequence can be expressed in a compact way as a linear combination of a low-rank motion basis. This subspace constraint effectively acts as a trajectory regularization term leading to temporally consistent optical flow. We formulate it as a robust soft constraint within a variational framework by penalizing flow fields that lie outside the low-rank manifold. The resulting energy functional can be decoupled into the optimization of the brightness constancy and spatial regularization terms, leading to an efficient optimization scheme. Additionally, we propose a novel optimization scheme for the case of vector valued images, based on the dualization of the data term. This allows us to extend our approach to deal with colour images which results in significant improvements on the registration results. Finally, we provide a new benchmark dataset, based on motion capture data of a flag waving in the wind, with dense ground truth optical flow for evaluation of multi-frame optical flow algorithms for non-rigid surfaces. Our experiments show that our proposed approach outperforms state of the art optical flow and dense non-rigid registration algorithms.

Highlights

  • Optical flow in the presence of non-rigid deformations is a challenging task and an important problem that continues to attract significant attention from the computer vision community

  • We compare against the duality-based Improved TV-L1 (ITV-L1)

  • Note that the results obtained with the Spline basis were omitted since they were almost equivalent to those obtained with the Discrete Cosine Transform (DCT) basis, as Fig. 7a reveals

Read more

Summary

Introduction

Optical flow in the presence of non-rigid deformations is a challenging task and an important problem that continues to attract significant attention from the computer vision community. We make use of the strong correlation between 2D trajectories of different points on the same non-rigid surface These trajectories lie on a lower dimensional subspace and we assume that the trajectory vector storing 2D positions of a point across time can be expressed compactly as a linear combination of a low-rank motion basis. This leads to a significant reduction in the dimensionality of the problem while implicitly imposing some form of temporal smoothness.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call