Abstract

Recalculating the sample size in adaptive two-stage designs is a well-established method to gain flexibility in a clinical trial. Jennison and Turnbull (2015) proposed an "optimal" adaptive two-stage design based on the inverse normal combination test, which minimizes a mixed criterion of expected sample size under the alternative and conditional power. We demonstrate that the use of a combination test is not necessary to control the type one error rate and use variational techniques to develop a general adaptive design that is globally optimal under predefined optimality criteria. This approach yields to more efficient designs and furthermore allows to investigate the efficiency of the inverse normal method and the relation between local (interim-based) recalculation rules and global (unconditional) optimality of adaptive two-stage designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.