Abstract

AbstractThe initial‐boundary problem for the linear theory of elasticity is considered. Based on the method of integrodifferential relations a new dynamical variational principle in which displacement, stress, and momentum functions are varied is proposed and discussed. To minimize the nonnegative functional under initial, boundary, and partial differential constraints arising in this approach a regular algorithm for approximation of the unknown functions is worked out. The algorithm gives us the possibility to estimate explicitly the local and integral quality of obtained numerical solutions. An effective numerical method for the optimization problems of controlled motions of elastic bodies with quadratic objective functionals is developed. As example, the 3D problems of optimal longitudinal motions of a rectilinear elastic prism with a quadratic cross section are considered for the terminal total mechanical energy to be minimized. The numerical results and their error estimates are presented and discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.