Abstract
Gibbs ringing is a feature of MR images caused by the finite sampling of the acquisition space (k-space). It manifests itself with ringing patterns around sharp edges which become increasingly significant for low-resolution acquisitions. In this paper, we model the Gibbs artefact removal as a constrained variational problem where the data discrepancy, represented in denoising and convolutive form, is balanced to sparsity-promoting regularization functions such as Total Variation, Total Generalized Variation and L_1 norm of the Wavelet transform. The efficacy of such models is evaluated by running a set of numerical experiments both on synthetic data and real acquisitions of brain images. The Total Generalized Variation penalty coupled with the convolutive data discrepancy term yields, in general, the best results both on synthetic and real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.