Abstract

AbstractWe investigate a model of dynamic recrystallization in polycrystalline materials. A probability distribution function is introduced to characterize the state of individual grains by grain size and dislocation density. Specifying free energy and dissipation within the polycrystalline aggregate we are able to derive an evolution equation for the probability density function via a thermodynamic extremum principle. Once the distribution function is known macroscopic quantities like average strain and stress can be calculated. For distribution functions which are constant in time, describing a state of dynamic equilibrium, we obtain a partial differential equation in parameter space which we solve using a marching algorithm. Numerical results are presented and their physical interpretation is given. (© 2013 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.