Abstract

Glutamine is an essential nutrient that regulates energy production, redox homeostasis, and signaling in cancer cells. Despite the importance of glutamine in mitochondrial metabolism, the mitochondrial glutamine transporter has long been unknown. Here, we show that the SLC1A5 variant plays a critical role in cancer metabolic reprogramming by transporting glutamine into mitochondria. The SLC1A5 variant has an N-terminal targeting signal for mitochondrial localization. Hypoxia-induced gene expression of the SLC1A5 variant is mediated by HIF-2α. Overexpression of the SLC1A5 variant mediates glutamine-induced ATP production and glutathione synthesis and confers gemcitabine resistance to pancreatic cancer cells. SLC1A5 variant knockdown and overexpression alter cancer cell and tumor growth, supporting an oncogenic role. This work demonstrates that the SLC1A5 variant is a mitochondrial glutamine transporter for cancer metabolic reprogramming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.