Abstract
Selection of initial points, the number of clusters and finding proper clusters centers are still the main challenge in clustering processes. In this paper, we suggest genetic algorithm based method which searches several solution spaces simultaneously. The solution spaces are population groups consisting of elements with similar structure. Elements in a group have the same size, while elements in different groups are of different sizes. The proposed algorithm processes the population in groups of chromosomes with one gene, two genes to k genes. These genes hold corresponding information about the cluster centers. In the proposed method, the crossover and mutation operators can accept parents with different sizes; this can lead to versatility in population and information transfer among sub-populations. We implemented the proposed method and evaluated its performance against some random datasets and the Ruspini dataset as well. The experimental results show that the proposed method could effectively determine the appropriate number of clusters and recognize their centers. Overall this research implies that using heterogeneous population in the genetic algorithm can lead to better results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.