Abstract

To solve a fuzzy optimization problem, we need to compare fuzzy numbers. Here, we make use of our recently proposed modified Kerre’s method as an effective approach for comparison of LR fuzzy numbers. Using our new results on LR fuzzy numbers, we show that to compare two LR fuzzy numbers, we do not need to compute the fuzzy maximum of two numbers directly. We propose a new variable neighborhood search approach for solving fuzzy number quadratic programming problems by using the modified Kerre’s method. In our algorithm, a local search is performed using descent directions, found by solving five crisp mathematical programming problems. In several available methods, a fuzzy optimization problem is converted to a crisp problem, but in our proposed approach, using our modified Kerre’s method, the fuzzy optimization problem is solved directly, without changing it to a crisp program. We give some examples to compare the performance of our proposed algorithm with some available methods and show the effectiveness of our proposed algorithm by using the nonparametric statistical sign test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.