Abstract

This article presents the design and fabrication of a variable stiffness soft gripper based on layer jamming. Traditional layer jamming units have some limitations, such as complicated multistep fabrication, difficulties in system integration, and diminishing in stiffen effect. In this article, a variable stiffness soft gripper is proposed based on the rotational jamming layers to reduce the slippery phenomenon between layers. To fabricate the proposed complex design, a two-step fabrication method is presented. First, multimaterial 3D printing is applied to directly print out the soft finger body with jamming layers. Second, mold casting is used to fabricate the outer vacuum chamber. The proposed gripper contains a main framework and three identical variable stiffness soft fingers. To demonstrate the effectiveness of the design, the soft gripper is mounted on a robotic arm to test its ability of grasping heavy objects while following complex grasping trajectory. The gripper can successfully grasp an object up to 360 g. Grasping robustness of the proposed gripper can be guaranteed when the robotic arm is moving at acceleration up to 7 m/s2. The results prove that the proposed design of the soft gripper can improve the grippers grasping robustness during high-speed movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.