Abstract

Most numerical methods which have been proposed for the approximate integration of the one-dimensional Schrödinger equation use a fixed step length of integration. Such an approach can of course result in gross inefficiency since the small step length which must normally be used in the initial part of the range of integration to obtain the desired accuracy must then be used throughout the integration. In this paper we consider the method of embedding, which is widely used with explicit Runge-Kutta methods for the solution of first order initial value problems, for use with the special formulae used to integrate the Schrödinger equation. By adopting this technique we have available at each step an estimate of the local truncation error and this estimate can be used to automatically control the step length of integration. Also considered is the problem of estimating the global truncation error at the end of the range of integration. The power of the approaches considered is illustrated by means of some numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.