Abstract
This paper presents a new operational strategy for a small scale wind farm which is composed of both fixed and variable speed wind turbine generator systems (WTGS). Fixed speed wind generators suffer greatly from meeting the requirements of new wind farm grid code, because they are largely dependent on reactive power. Integration of flexible ac transmission systems (FACTS) devices is a solution to overcome that problem, though it definitely increases the overall cost. Therefore, in this paper, we focuses on a new wind farm topology, where series or parallel connected fixed speed WTGSs are installed with variable speed wind turbine (VSWT) driven permanent magnet synchronous generators (PMSG). VSWT-PMSG uses a fully controlled frequency converter for grid interfacing and it has abilities to control its reactive power as well as to provide maximum power to the grid. Suitable control strategy is developed in this paper for the multilevel frequency converter of VSWT-PMSG. A real grid code defined in the power system is considered to analyze the low voltage ride through (LVRT) characteristic of both fixed and variable speed WTGSs. Moreover, dynamic performance of the system is also evaluated using real wind speed data. Simulation results clearly show that the proposed topology can be a cost effective solution to augment the LVRT requirement as well as to minimize voltage fluctuation of both fixed and variable speed WTGSs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.