Abstract
One of the standard problems in statistics consists of determining the relationship between a response variable and a single predictor variable through a regression function. Background scientific knowledge is often available that suggests that the regression function should have a certain shape (e.g. monotonically increasing or concave) but not necessarily a specific parametric form. Bernstein polynomials have been used to impose certain shape restrictions on regression functions. The Bernstein polynomials are known to provide a smooth estimate over equidistant knots. Bernstein polynomials are used in this paper due to their ease of implementation, continuous differentiability, and theoretical properties. In this work, we demonstrate a connection between the monotonic regression problem and the variable selection problem in the linear model. We develop a Bayesian procedure for fitting the monotonic regression model by adapting currently available variable selection procedures. We demonstrate the effectiveness of our method through simulations and the analysis of real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.