Abstract

Applications requiring variable-precision arithmetic often rely on software implementations because custom hardware is either unavailable or too costly to build. By using the flexibility of the Xilinx XC4010 field programmable gate arrays, we present a hardware implementation of square root that is easily tailored to any desired precision. Our design consists of three types of modules: a control logic module, a data path module to extend the precision in 4-bit increments, and an interface module to span multiple chips. Our data path design avoids the common problem of large fan-out delay in the critical path. Cycle time is independent of precision, and operation latency can be independent of interchip communication delays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.