Abstract

As one of core problems in rough set theory, normally, classification analysis requires that “all” rather than “most”elements in one class are similar to each other. Nevertheless, the situation is just opposite to that in many actual applications. This means users actually just require “most” rather than “all”elements in a class are similar to each other. In the case, to further enhance the robustness and generalization ability of rough set based on tolerance relation, this paper, with concept lattice as theoretical foundation, presents a variable precision rough set model based on the granularity of tolerance relation, in which users can flexibly adjust parameters so as to meet the actual needs. The so-called relation granularity means that the tolerance relation can be decomposed into several strongly connected sub-relations and several weakly connected sub-relations. In essence, classes defined by people usually correspond to strongly connected sub-relations, but classes defined in the paper always correspond to weakly connected sub-relations. In the paper, an algebraic structure can be inferred from an information system, which can organize all hidden covers or partitions in the form of lattice structure. In addition, solutions to the problems are studied, such as reduction, core and dependency. In short, the paper offers a new idea for the expansion of classical rough set models from the perspective of concept lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.