Abstract
Classical rough set theory is a technique of granular computing for handling the uncertainty, vagueness, and granularity in information systems. Covering-based rough sets are proposed to generalize this theory for dealing with covering data. By introducing a concept of misclassification rate functions, an extended variable precision covering-based rough set model is proposed in this paper. In addition, we define the f-lower and f-upper approximations in terms of neighborhoods in the extended model and study their properties. Particularly, two coverings with the same reductions are proved to generate the same f-lower and f-upper approximations. Finally, we discuss the relationships between the new model and some other variable precision rough set models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.