Abstract

This paper introduces the development of a semi-active friction based variable physical damping actuator (VPDA) unit. The realization of this unit aims to facilitate the control of compliant robotic joints by providing physical variable damping on demand assisting on the regulation of the oscillations induced by the introduction of compliance. The mechatronics details and the dynamic model of the damper are introduced. The proposed variable damper mechanism is evaluated on a simple 1-DOF compliant joint linked to the ground through a torsion spring. This flexible connection emulates a compliant joint, generating oscillations when the link is perturbed. Preliminary results are presented to show that the unit and the proposed control scheme are capable of replicating simulated relative damping values with good fidelity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.