Abstract

This paper is about the construction and reconfiguration analysis of a novel variable-DOF (or kinematotropic) single-loop 7R spatial mechanism, which is composed of seven R (revolute) joints. Firstly, the novel variable-DOF single-loop 7R spatial mechanism is constructed from a general variable-DOF single-loop 7R spatial mechanism and a plane symmetric Bennett joint 6R mechanism for circular translation. The reconfiguration analysis is then carried out in the configuration space by solving a set of kinematic loop equations based on dual quaternions and the natural exponential function substitution using tools from algebraic geometry. The analysis shows that the variable-DOF single-loop 7R spatial mechanism has five motion modes, including a 2-DOF planar 5R mode, two 1-DOF spatial 6R modes, and two 1-DOF spatial 7R modes and can transit between the 2-DOF planar 5R mode and each of the other motion modes through two transition configurations. There are two transition configurations from which the mechanism can switch among its four 1-DOF motion modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.