Abstract

In this paper, a symmetric four-port microwave varactor based 90 ° directional coupler with tunable coupling ratios and reconfigurable responses is presented. The proposed coupler is designed based on the modified structure of a crossover, where varactors are loaded. By applying suitable biasing voltages to the varactors, the power-dividing ratios between the two output ports (i.e., port 2 and port 3) of the coupler can be easily controlled. Moreover, it is found that the realizable power ratio using the proposed structure is very flexible (it could be extremely large or small). Therefore, under the special case when the coupling ratio is tuned to be 1, the proposed coupler is reconfigured to be a crossover. Good isolation and return-loss performance have been maintained for different power-dividing ratios. To theoretically analyze the proposed device, closed-form design equations are derived using the even-odd mode method. Based on these analytical equations, an experimental prototype working at 1 GHz is designed, fabricated, and characterized. The measurement results match well with the simulation and theoretical results, validating the proposed design theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call