Abstract

Because of their features, pneumatic motors are often preferred to their electrical counterparts in a number of industrial applications. In spite of their growing diffusion, to the best of authors knowledge, a well-established design procedure is still missing due to the large number of factors (e.g. friction, fluid-dynamic losses, etc.) introducing non idealities in the motor behaviour. Moving from these considerations, this work aims to illustrate the development of a design methodology, implemented in the form of a prototypal software tool, capable of automatically define all the necessary constructive parameters of vane motors on the basis of a required characteristic curve and to considerably speed-up the whole design process. The methodology is based on three main elements: an experimental-mathematical model obtained by means of a DoE approach; a search algorithm meant to identify the constructive solution best matching the design target; a parametric CAD model which is directly driven by the constructive parameters provided by the mathematical model. The presented methodology, applied to the development of a set of pneumatic vane motors, led to the manufacturing of units fulfilling the design target within an error lower than 3 %, thereby demonstrating the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.