Abstract
Vancomycin, the drug of last resort for Gram-positive bacterial infections, has also been rendered ineffective by the emergence of resistance in such bacteria. To combat the threat of vancomycin-resistant bacteria (VRB), we report the development of a dipicolyl-vancomycin conjugate (Dipi-van), which leads to enhanced inhibition of cell-wall biosynthesis in VRB and displays in vitro activity that is more than two orders of magnitude higher than that of vancomycin. Conjugation of the dipicolyl moiety, which is a zinc-binding ligand, endowed the parent drug with the ability to bind to pyrophosphate groups of cell-wall lipids while maintaining the inherent binding affinity for pentapeptide termini of cell-wall precursors. Furthermore, no detectable resistance was observed after several serial passages, and the compound reduced the bacterial burden by a factor of 5 logs at 12 mg kg(-1) in a murine model of VRB kidney infection. The findings presented in this report stress the potential of our strategy to combat VRB infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.