Abstract

Reconfigurable radio-frequency components are in high demand for modern communication systems as they can be involved in multiband and multistandard electronic devices. The key part of such components is an active switching element. This work offers a way to obtain an efficient microwave switch using vanadium dioxide-poly (methyl methacrylate) composite. Differential scanning calorimetry, SQUID magnetometery, and impedance spectroscopy measurements were used to characterize the phase transition in the proposed composite. Temperature induced metal-insulator transition occurs at technologically attractive 341 K. The transition leads to a change of microwave transmission trough VO2 -PMMA composite from -4.9 dB for low-temperature monoclinic form to -5.8 dB for high-temperature rutile form. This provides an ability to tune the material's transparency in the microwave range, while the shaping polymer matrix provides the proper mechanical processability of the switching element.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.