Abstract

BackgroundMalaria remains a major cause of morbidity and mortality among children in Africa. There is inadequate information regarding malaria transmission-intensity in some of the worst-affected parts of sub-Saharan Africa (SSA). The Malaria Atlas Project (MAP) was developed in 2006, to project estimates of malaria transmission intensity where this data is not available, based on the vector behaviour for malaria. Data from malariometric studies globally were obtained and modelled to provide prevalence estimates. The sensitivity of these maps, however, reduces with unavailability of data. This necessitates a validation of these maps locally, and investigation into alternative methods of predicting prevalence to guide malaria control interventions and improve their efficiency and effectiveness. This study was conducted to compare the true estimates in Sokoto, Nigeria, with the MAP projections for north-western Nigeria, and it proposes an alternative way of mapping malaria intensity in Nigeria and beyond.MethodsA malariometric survey was conducted including children aged 2–10 years in communities in Wamakko Local Government Area (LGA) of Sokoto State, Nigeria. Children had blood examinations for the presence of malaria parasitaemia and a physical examination for the signs of clinical malaria. All the sites from which children were included in the study were geo-located using a hand-held Global Positioning System (GPS) device and compared this to MAP maps of the same area. A mapping software was also used to generate a malaria prevalence map of the study area, considering the average flight distances of the vector.ResultsThe prevalence among children 2 to 10 years was found to be 34.8% which was within the 30–40% projected prevalence for the study area by MAPs. However, it was much lower than the projection during the dry season (20.2%) and higher than the projected estimate during the rainy season (49.3%). There was monoparasitaemia of Plasmodium falciparum throughout the study area, although the study was not specifically designed to identify other species. The prevalence of parasitaemia and splenomegaly were similar when overall and when considered by age of the participants. The study also generated a map of malaria transmission, which mapped out areas where the prevalence was confirmed or likely to be to be within the range of 30–40%, based on the sites which constituted the study area for this study.ConclusionThe study concludes that the prevalence of malaria and its transmission intensity in Sokoto are similar to Malaria Atlas Project predictions for the area and that, for malaria control planning purposes, the projections may be utilized, with more efforts at validation of the MAPs in other locations and terrains. Also, the vector behaviour may be used to map transmission of malaria and other vector-transmitted diseases, where this information is lacking.

Highlights

  • Malaria remains a major cause of morbidity and mortality among children in Africa

  • The study concludes that the prevalence of malaria and its transmission intensity in Sokoto are similar to Malaria Atlas Project predictions for the area and that, for malaria control planning purposes, the projections may be utilized, with more efforts at validation of the MAPs in other locations and terrains

  • Study setting The study was conducted in Wamakko Local Government Area (LGA) of Sokoto State, located in North Western Nigeria; it has an area of 732.146 km2 and a population of 234,860 in 2017

Read more

Summary

Introduction

Malaria remains a major cause of morbidity and mortality among children in Africa. There is inadequate information regarding malaria transmission-intensity in some of the worst-affected parts of sub-Saharan Africa (SSA). Data from malariometric studies globally were obtained and modelled to provide prevalence estimates The sensitivity of these maps, reduces with unavailability of data. Estimates showed that about 266,000 African children died before their fifth birthday in 2017 from malaria, and there is inadequate data from disease notification from Nigeria, an estimated 177.5 million cases of malaria occurred in 2015 [3, 4]. Due to the behaviour of the vector, the disease transmission is ‘local and focal’ and dependent on the flight range of the mosquito. It is affected by geographical factors such as altitude, vegetation, topography, rainfall and seasonality [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.