Abstract

Rotator cuff tears are a significant clinical problem previously investigated by unvalidated computational models that either use simplified geometry or isotropic elastic material properties to represent the tendon. The objective of this study was to develop an experimentally validated, finite element model of supraspinatus tendon using specimen-specific geometry and inhomogeneous material properties to predict strains in intact supraspinatus tendon at multiple abduction angles. Three-dimensional tendon surface strains were determined at 60 deg, 70 deg, and 90 deg of glenohumeral abduction for articular and bursal surfaces of supraspinatus tendon during cyclic loading (5-200 N, 50 cycles, 20 mm/min) to serve as validation data for computational model predictions. A finite element model was developed using the tendon geometry and inhomogeneous material properties to predict surface strains for loading conditions mimicking experimental loading conditions. Experimental strains were directly compared with computational model predictions to validate the model. Overall, the model successfully predicted magnitudes of strains that were within the experimental repeatability of 3% strain of experimental measures on both surfaces of the tendon. Model predictions and experiments showed the largest strains to be located on the articular surface (∼8% strain) between the middle and the anterior edge of the tendon. Importantly, the reference configuration chosen to calculate strains had a significant effect on strain calculations, and therefore, must be defined with an innovative optimization algorithm. This study establishes a rigorously validated specimen-specific (both geometry and material properties) computational model using novel surface strain measurements for the use in investigating the function of the supraspinatus tendon and to ultimately predict the propagation of supraspinatus tendon tears based on the tendon's mechanical environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call