Abstract

A better characterisation of soft tissues is required to improve the accuracy of human body models used, amongst other applications, for virtual crash modelling. This paper presents a theoretical model and the results of an experimental procedure to characterise the quasi-static, compressive behaviour of skeletal muscle in three dimensions. Uniaxial, unconstrained compression experiments have been conducted on aged and fresh animal muscle samples oriented at various angles from the fibre direction. A transversely isotropic hyperelastic model and a model using the theory of transverse isotropy and strain dependent Young's moduli (SYM) have been fitted to the experimental data. Results show that the hyperelastic model does not adequately fit the data in all directions of testing. In contrast, the SYM gives a good fit to the experimental data in both the fibre and cross-fibre direction, up to 30% strain for aged samples. The model also yields good prediction of muscle behaviour at 45° from the fibre direction. Fresh samples show a different behaviour than aged tissues at 45° from the fibre direction. However, the SYM is able to capture this difference and gives a good fit to the experimental data in the fibre, the cross-fibre and at 45° from the fibre direction. The model also yields good prediction of muscle behaviour when compressed at 30° and 60° from the fibre direction. The effect of the time of test after death has also been investigated. Significant stiffening of muscle behaviour is noted a few hours after death of the subject.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call