Abstract

The low electrification rate in rural sub-Saharan Africa prevents access to energy services which are essential to improve living conditions. One of these energy services is electrified water pumping, which is particularly relevant for these areas where water access continues being a significant challenge. Pumping systems powered by photovoltaic energy have emerged as an interesting solution in off-grid areas. This article presents a model of photovoltaic water pumping system (PVWPS) for providing domestic water to off-grid rural communities. The model simulates the pumped flow rate and the water level in the storage tank from the climatic data (irradiance, ambient temperature) and the profile of water collection by the users of the system. The modelling of the different stages of the energy conversion chain and a method for identifying the unknown parameters of PVWPS are presented in this article. The model is applied to a pilot PVWPS situated in a rural village of Burkina Faso. The comparison between the measurements performed on the system and the model outputs allows to validate the model experimentally. Results indicate that the model permits to accurately simulate the water height in the tank both when climatic data from local sensors and from satellite are inputted in the model. The model could therefore be applied to other off-grid areas to perform techno-economic optimization and size new PVWPS as well as to evaluate the performances of existing PVWPS. The originalities of this work include the consideration of the water collection profile as a model input and the monitoring of a PVWPS in a rural village of Sub-Saharan Africa, an area where no continuous measurements on these systems has been performed, to the best knowledge of the authors. Further, the comparison of the impact of inputting satellite climatic data instead of measured ones on the PVWPS model accuracy is also a novel contribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.