Abstract
A fundamental question of physiology is how gut-brain signaling stimulates appetite. While many studies have emphasized the importance of vagal afferents to the brain in inducing satiation, little is known about whether and how the vagal-mediated gut-brain pathway senses orexigenic signals and stimulates feeding. Here, we identified a previously uncharacterized population of fasting-activated catecholaminergic neurons in the nucleus of the solitary tract (NTS). After characterizing the anatomical complexity among NTS catecholaminergic neurons, we surprisingly found that activation of NTS epinephrine (ENTS) neurons co-expressing neuropeptide Y (NPY) stimulated feeding, whereas activation of NTS norepinephrine (NENTS) neurons suppressed feeding. Monosynaptic tracing/activation experiments then showed that these NTS neurons receive direct vagal afferents from nodose neurons. Moreover, activation of the vagal→NPY/ENTS neural circuit stimulated feeding. Our study reveals an orexigenic role of the vagal→NTS pathway in controlling feeding, thereby providing important insights about how gut-brain signaling regulates feeding behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.