Abstract

BackgroundCyperus rotundus L. is a C4 weed of large vegetative and reproductive vigor endowed with competitive advantages over most crop species mainly under adverse environmental conditions. Vacuole functions are critical for the mechanisms of drought resistance, and here the modulation of the primary system of vacuolar ion transport is investigated during a transient water stress imposed to this weed and to C4 crop species (Zea mays L.). MethodsThe vacuolar H+ pumps, the H+-ATPase and H+-PPiase, expression, activities and the energy coupling were spectrophotometrically investigated as key elements in the differential drought-resistance mechanisms developed by weeds and crops. ResultsIn C. rotundus tonoplasts, ATP hydrolysis was more sensitive to drought than its coupled H+ transport, which was in turn at least 3-folds faster than that mediated by the H+-PPiase. Its PPi hydrolysis was only slightly affected by severe water deficit, contrasting with the disruption induced in the PPi-dependent H+-gradient. This effect was antagonized by plant rehydration as the H+-PPiase activity was highly stimulated, reassuming a coupled PPi-driven H+ pumping. Maize tonoplasts exhibited 2–4 times lower hydrolytic activities than that of C. rotundus, but were able to overactivate specifically PPi-dependent H+ pumping in response to stress relief, resulting in an enhanced H+-pumps coupling efficiency. ConclusionThese results together with immunoanalysis revealed profiles consistent with pre- and post-translational changes occurring on the tonoplast H+-pumps, which differ between weeds and crops upon water deficit. General significanceThe evidences highlight an unusual modulation of the H+-PPiase energy coupling as a key biochemical change related to environmental stresses adaptive capacity of plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.