Abstract

Genotype VII Newcastle disease virus (NDV) has been documented as the predominant epidemic genotype in China and some other Asian countries since 1990s. Recent work has demonstrated that NDV vaccines phylogenetically closer to epidemic viruses provide better protection than conventional vaccines in terms of reducing virus shedding and transmission. Since there is currently no available vaccine which possesses a close antigenic relationship to the prevalent virulent NDV, a new vaccine to protect against the infection of this genotype NDV is in urgent need. Here, we describe the generation of a pathogenicity-attenuated genotype VII NDV (NDV/ZJ1HN) from a velogenic NDV by mutating the velogenic amino acid motif at the F protein cleavage site using reverse genetics techniques. The attenuated-pathogenicity of NDV/ZJ1HN was confirmed by examination of mean death time (MDT) in embryonated eggs and intracerebral pathogenicity index (ICPI) in day-old chickens. Subsequently, 2 weeks old birds were immunized with live and inactivated NDV/ZJ1HN-based vaccines and challenged 3 or 4 weeks post-immunization with a lethal dose of a virulent genotype VII NDV strain. Results showed that NDV/ZJ1HN effectively protected the vaccinated birds from morbidity and mortality against genotype VII virus challenge and significantly reduced virus shedding from the vaccinated birds when compared with La Sota vaccinated animals, suggesting that NDV/ZJ1HN is a promising vaccine candidate for the control of current ND epidemic in China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call