Abstract

Nowadays, the monitoring of plant water stress is of high importance in smart agriculture. Instead of the traditional ground soil-moisture measurement, the leaf sensing is a new technology, which is used for the detection of plants needing water. In this paper, a novel, low-cost, and low-power system for leaf sensing using a new plant backscatter sensor node/tag is presented. The latter, can result in the prevention of water waste (water-use efficiency), when is connected to an irrigation system. Specifically, the sensor measures the temperature differential between the leaf and the air, which is directly related to the plant water stress. Next, the tag collects the information from the leaf sensor through an analog-to-digital converter, and then, communicates remotely with a low-cost software-defined radio reader using monostatic backscatter architecture. The tag consists of the sensor board, a microcontroller, an external timer, and an RF front-end for communication. The timer produces a subcarrier frequency for simultaneous access of multiple tags. The proposed work could be scaled and be a part of a large backscatter wireless sensor network. The communication protocol exploits the low-complexity Morse code modulation on a 868 MHz carrier signal. The presented novel proof-of-consent prototype is batteryless and was powered by a flexible solar panel consuming power around $20~\mu \text{W}$ . The performance was validated in an indoors environment where wireless communication was successfully achieved up to 2 m distance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.